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Abstract

In our days, mechatronic systems are very com-
plex machines that require special supervision during
their operation, to avoid accidents and critical faults
that can be harmful to people. This paper describes
a general framework to define the components of a
new complete diagnostic system. The main part of
this system is the diagnostic system block, where we
define the decision rules and diagnostic statements
to detect and isolate the faulty components. We use
two approaches to diagnose dynamic systems. The
methods developed are: a) Analytical redundancy
and knowledge-based redundancy tools; b) The al-
gorithms based on classical sequential Monte Carlo
methods.
Keywords:.- Fault Detection and Isolation, Particle
Filtering, Fault, Diagnostic, Dynamic System.

1 Introduction

The development of sophisticated mechanical sys-
tems, together with the electronic systems and new
edge of computers have allowed the design and
production of new complex mechatronic systems.
Mechatronic products are more complex, and with
a greater probability of faults. Now, computer sys-
tems are able to develop a diagnostic system with
the following functions: faults detection, isolation
of the components with failure, and identification of
the size of the fault. Additionally, an appropriate
diagnostic system is necessary to take into consid-
eration because both the machine and its environ-
ment changes with time, measurements are corrupt-

ed by noise, some quantities of interest are unobserv-
able, and machine states are changing under different
operating conditions. Another advantage of the di-
agnostic system is that we can reduce maintenance
costs when the failures are detected on time. This
paper defines a general framework for fault diagno-
sis, and we will test our algorithms with a mechanical
system: traditional suspension system in a motor ve-
hicle. The techniques used in the diagnostic system
are:

- Analytical redundancy and knowledge-based re-
dundancy tools. We are going to do the fault
diagnosis using the structured hypothesis test,
and using the transfer function obtained with
Recursive Least Squares (RLS).

- Using an algorithm based on classical sequential
Monte Carlo methods, such as look ahead Rao-
Blackwellized Particle Filtering.

Finally, we present the experimental tests that vali-
date the diagnostic system.

2 Mechanical System

The mechanical system corresponds to the suspen-
sion system of a vehicle that vibrates in the vertical
direction while traveling over a road with obstacles.
The suspension system was simplified at only one
spring and one damper. This model is used for val-
idation of the algortihms implemented in the diag-
nostic system. The parameters of the model are:

- Mass: m = 1200 kg
- Spring constant: k = 400 KN/m
- The system presents a damper with a ratio damping
ζ = 0.5. Damper constant: c = 21910 Kg/sec
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Figure 1: Vehicle suspension system model

The mechanical system can be modeled as a single
degree of freedom system, as it is shown in Figure 1.
Where:

u(t) represents the perturbation to the system.

m is the vehicle mass.

k,c represents the spring and damper constants.

Applying the second law of Newton, we can define
the differential equation to evaluate the motion sys-
tem,

ẍ +
c

m
ẋ +

k

m
x =

1
m

u(t) (1)

The equation (1) implies two state variables: x1 =
x, x2 = ẋ = ẋ1. Then, the model can be repre-
sented by the following state space:
[
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ẋ2

]
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[
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]
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The model represented by equations (2-3) was pro-
grammed in Matlab and these equations represent
the behavior of the vehicle running over a road. Sud-
denly, the vehicle is affected by two types of pertur-
bations over the road. These are:

a) Impulse signal. This input will be introduced
in the model at a specific time, and its magni-
tude will be 65000 N.

b) Sinusoidal signal. This input will be defined in
agreement with the following equation, which
defines the road shape.

u(t) = A ∗Sin(ωt) = 45000∗Sin(0.2908∗V ∗ t)

where V is the car’s speed, t is the time, A is
the amplitude, and ω is the frequency.

3 General Framework for Fault

Diagnosis

3.1 Faults

Any deviation from the normal behavior in the pro-
cess or system is considered as a fault. Figure 2 shows
a diagram of the representation of a general system
model with the inputs/outputs required in the eval-
uation of the process. One way to model a fault is

Figure 2: General system model

with the observation of the variation of the constant
parameters of the system. We will be using this type
to describe the faults. The constant parameters of
the system are: the spring constant of stiffness (k),
and the damper constant (c). Then, the fault vector
is θG = [k, c, m].
Sometimes, it is necessary to model a fault as a vari-
ation of some signal. This type of fault modeling is
represented by θZ . In our model, we are going to
consider only faults in the parameters of the system
(damper and spring) θG, and we will have two types
of faults: abrupt and incipient fault. For the spring,
we will consider an abrupt fault, and in the damper,
we will apply both types of faults.

3.2 Components and faulty modes

Each system can be divided into components in or-
der to facilitate the model construction and the fault
isolation. For each component a situation of fault
can occur, considering that we have a number of p
components in the system, the fault state θ of the
complete system can be written as,

θ = [θ1, θ2 . . . θP ]

The system has been divided in two components: the
spring (S) and the damper(D). The faulty modes rep-
resent all the possible failures that can be present in
the components. In our system, we have six faulty
modes, and they are defined as shown in Table 1.

Table 1. Faulty modes for the system.
Faulty Mode Component Fault Mode

(ΘNF ) ΘNF =
{
[400000, 21910]

}

(ΘS) ΘS =
{
[k, 21910]; k = 250000

}

(ΘD1) ΘD1 =
{
[400000, c]; c = 200

}

(ΘD2) ΘD2 =
{
[400000, c]; c = 21910 − 7137 ∗ t

}

(ΘSD1) ΘSD1 =
{
[k, c]; k = 250000, c = 200

}

(ΘSD2) ΘSD2 =
{
[k, c]; k = 250000, c = 21910 − 7137 ∗ t

}
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The values of Table 1 define the normal situation
(k = 400000, c = 21910) and the fault situation
(k = 250000, c = 200, orc = 21910 − 7137 ∗ t) of
the components.

3.3 Diagnostic system

One important part of the diagnostic system is the
Residual Generator block. This block receives the
output and inputs of the process, and with this in-
formation it computes some quantities that indicate
the inconsistency between the actual measured pla-
nt variables and the output produced by the math-
ematical model of the process. The structure of a
fault diagnostic system implies to define some deci-
sion rules,γ(x), in the Residual Generator, and some
decision logic to generate a diagnosic statement,
S = γ(x). The decision rules tell us if the behav-
ior of the system is derived or not from the faulty
mode that contains the decision rule. Once we have
the results of all decision rules, the diagnostic sta-
tement must be established. There are many ways
to do this. We are going to evaluate the following
options:

- A diagnostic system using an analytical redun-
dancy methods.

- A diagnostic system using algorithms based on
classical sequential Monte Carlo methods.

3.3.1 Diagnostic system with analytical re-
dundancy methods

Fault diagnosis using structured hypothesis test.
This method is a generalization of the structured
residuals method, [11]. It consists in the determi-
nation of the model hypothesis for each faulty mod-
e. In our work, the hypothesis represents the me-
dian value, and the standard deviation, µi, σi, i =
(a1, a2, b1, b2), of the parametric identification for
each faulty mode. These values will be obtained in
the Residual Generator using a RLS algorithm. The
hypotheses are defined as:

H0NF = f(µa1, σa1, µa2, σa2, µb1, σb1, µb2, σb2)
H0FS = f(µa1, σa1, µa2, σa2, µb1, σb1, µb2, σb2)
H0FD1 = f(µa1, σa1, µa2, σa2, µb1, σb1, µb2, σb2)
H0FD2 = . . .
H0FSD1 = . . .
H0FSD2 = . . .

The hypothesis must be tested using a test statistic.
It is defined as,

Z0 =
µ − µ0

σ0/
√

n
= γ (4)

Figure 3: Diagnosis using structured hypothesis test

Where n is the number of samples. Therefore, we
compute the individual test γ1 . . . γn for all fault
modes, and these values represent the decision rules
to make the logic decisions. Taking into account that
γk(x) is a hypothesis test, and a function of u(t) and
y(t), then, we need to compare its value with a stan-
dard normal distribution to accept or reject the hy-
pothesis. We determine the diagnostic statement (S)
as follows:

|Z0| > Zα/2 → S = 1 (5)

The diagnostic statement (S = 1) allows us to diag-
nose and isolate the faulty component with faults.
Figure 3 shows the diagnostic system. The possible
diagnostic statements are:

S1 = 1; Faulty system
S2 = 1; Faulty Spring
S3 = 1; Loss of damper
S4 = 1; Oil leak in faulty damper
S5 = 1; Faulty spring and loss of damper
S6 = 1; Faulty spring and oil leak in damper

Fault diagnosis using the transfer function. We are
using the RLS algorithm to obtain the parametric
identification required in the hypothesis test diagno-
sis. With the parameters, we can build the transfer
function that defines the behavior of the system in
the discrete state space. This function has the fol-
lowing form,

H(z) =
B(q−1)
A(q−1)

=
b1z + b2

z2 + a1z + a2
(6)

The parameters a1, a2, b1, b2 are obtained by the RLS
algorithm. With equation (6), we apply the classi-
cal control theory methods to make a mapped from
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Figure 4: Diagnostic system using the transfer func-
tion

z-domain to s-domain, and then we compute the
damper ratio that represent the decision rule. The
flow diagram of the diagnostic system is shown in
Figure 4, where the decision rules and the diagnostic
statements are defined. The diagnostic statements
are:

S1 = Loss of damper
S2 = Spring fault or oil leak in damper
S3 = No Fault in Suspension Syst.
S4 = Spring fault or high damping constant

3.3.2 Diagnostic system using classical se-
quential Monte Carlo methods

Basically, we will use Particle Filters for state esti-
mation on line. It is possible to compute the distri-
bution of the continuous states exactly. However, it
is very difficult to determine the true discrete state
of the system at any point in time with certainty.
We need to represent uncertainty about the state of
the dynamic system, using a probability distribution
over the states that system could be in. To main-
tain this distribution, the algorithms will perform
Bayesian belief updating. The essence of the Parti-
cle Filter approach is to simulate the behavior of the
system. Each sample predicts a future behavior of
the system in a Monte Carlo fashion, and the samples
that match the observed system behavior are kept,
while that fails to predict the observations, tends to
die out [8,9]. The approach described in this method
is based on the observation that looking ahead at
the measurements that result as a consequence of a
fault can improve diagnosis. This allows us to im-
prove the probability of having a sample following
a low-probability transition because the probability
of such sample is based on the posterior likelihood
of the transition, rather than the probability. The
method considers four steps [10]:

1. Kalman Prediction step.

2. Selection step.

3. Sequential importance sampling step.

4. Updating step.

Figure 5 shows the implemented diagnostic system
for the dynamic system.

Figure 5: Diagnosis using sequential Monte Carlo meth-
ods

4 Proposed Tests

All the blocks were implemented in Matlab to get a
simulation on line. During the simulation, we applied
all the faulty modes specified for the system. When
the fault appeared, the programs executed the diag-
nostic system to detect and isolate the faulty com-
ponent.

4.1 Results using analytical redun-
dancy methods

Fault diagnosis using structured hypothesis
test. We verify the diagnostic system applying all
the faulty modes with the two types of inputs. Figure
6 shows the obtained results when we introduced a
fault in the damper. Top plots show: impulse signal
to the system, the vehicle position and vertical speed
during the perturbation. Bottom plots show: para-
metric identification with RLS, and the parameters
values to test the hypothesis. The diagnostic system
detected the fault and isolated the faulty component
(the damper).
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Figure 6: Faulty damper detection

Fault diagnosis using the transfer function.
Table 3 presents the results obtained when we intro-
duced the sinusoidal input. The tests were done with
different vehicle speeds. Figure 7 shows the results
obtained when we applied the oil leak in the damper.
Top plots show: The perturbation to the system,
the vehicle position and the vertical speed. Bottom
plots show: parametric identification with RLS, the
parameters of the transfer function, and the bode di-
agram. In this case, the diagnostic system detected
the fault, but it did not isolate the faulty component.
The bode diagram was computed with Matlab and it
only confirms the faulty situation with the frequency
response.

Table 3. Results obtained for the sinusoidal input.
Faulty
Mode

Warning Km/h Observations

FS Verify
Suspen-
sion Syst.

50 None

FD1 Loss-
damper

75 None

FD2 Loss-
damper

40 The faulty component is
not detected. See Figure
7

FSD1 Loss-
damper

50 None

FSD2 Loss-
damper

40 The faulty component is
not detected.

4.2 Diagnosis results using sequential
Monte Carlo methods

To apply this method it was necessary to calculate
the matrices of the discrete state spaces for each
faulty mode. Then, we simulated the transition ma-
trix to evaluate the evolution of the dynamic system
over time. The following test were done:
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Figure 7: Oil Leak in Damper.

1. We simulated the dynamic system and some
faults were implemented over time. Figure 8
presents the obtained results with the fault mod-
e FSD1(Z6). The diagnostic system detects the
fault and it isolates the faulty component very
well. Top plot shows the behavior of the system
with fault, and middle plot shows the identifica-
tion made with the laRBPF algorithm. Bottom
plot shows the faulty mode isolated by the diag-
nostic system. During the tests, we obtained an
effectiveness of 80% of the laRBPF algorithm to
detect and isolate the faulty components.
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Figure 8: Results for the spring and damper faults.

2. We executed the simulation, and we applied the
same faults sequence of test one, but the algo-
rithm was evaluated with 40 particles. We can
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observe, in Figure 9, that mistake was reduced
to identify the fault mode, Z5, but the algorithm
requires more time to get the diagnosis.
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Figure 9: Results for the oil leak in the damper.

5 Conclusions

We have described a new general framework of a
FDI system applied to a mechanical system. We
modeled the suspension system using equations of
the state space. Thereafter, we defined the compo-
nents, faults, faulty modes and the diagnostic system
to detect and isolate the fault in the mechanical sys-
tem. One important part was the diagnostic system,
where we established the decision rules to get the di-
agnostic statement in the system. We developed dif-
ferent techniques to diagnose the mechanical system
and we demonstrated how these algorithms can de-
tect and isolate the faults with excellent results. The
present work defines a methodology to implement a
diagnostic framework in any mechatronic system.
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